Search

Search results:

241.
The chain rule - general formula for composite functions
$\left(f\left(g(x)\right)\right)'=f'(g(x))\cdot g'(x)$
242.
$\left(f^2\right)'=2\cdot f \cdot f'$
243.
$\left( \sin f\right)'=\cos f \cdot f'$
244.
$\left( \cos f \right)' = - \sin f \cdot f'$
245.
$\left( \tan f \right)' = \dfrac{f'}{\cos f^2}$
246.
$\left( e^f \right)' = e^f \cdot f'$
247.
$\left( a^x\right)' = a^f \cdot \ln a \cdot f'$
249.
$\int x^2 dx=\dfrac{x^2}{2}+C$
250.
$\int x^2 dx=\dfrac{x^3}{3}+C$
251.
$\int x^p dx=\dfrac{x^{p+1}}{p+1}+C,p \ne 1$
252.
$\int \left(ax+b\right)^n \,dx=\dfrac{\left(ax+b\right)^{n+1}}{a(n+1)}+C, n \ne 1$
253.
$\int \dfrac{dx}{x} = \ln|x|+C$
254.
$\int \dfrac{1}{ax+b}dx=\dfrac{1}{a}\ln|ax+b|+C$
255.
$\int \dfrac{ax+b}{cx+d}dx=\dfrac{a}{c}x+\dfrac{bc-ad}{c^2} \ln|cx+d|+C$
256.
$\int \dfrac{dx}{(x+a)(x+b)} dx=\dfrac{1}{a-b}+\ln\left| \dfrac{x+b}{x+a}\right|+C, a\ne b$
257.
$\int \dfrac{x}{a+bx}dx=\dfrac{1}{b^2}\left(a+bx-a\ln|a+bx|\right) + C$
258.
$\int \dfrac{x^2 dx}{a+bx}=\dfrac{1}{b^3}\left[ \dfrac{1}{2} (a+bx)^2 - 2a(a+bx)+a^2\ln|a+bx|\right]+C$
259.
$\int \dfrac{dx}{x(a+bx)}dx=\dfrac{1}{a} \ln \left| \dfrac{a+bx}{x} \right| + C$
260.
$\int \dfrac{dx}{x^2(a+bx)}dx=-\dfrac{1}{ax}+\dfrac{b}{a^2} \ln\left|\dfrac{a+bx}{x}\right|+C$