Expressing trigonometric functions of angle $3\alpha$, $4\alpha$ and $5\alpha$ in terms of functions of an angle $\alpha$.

1.
$\sin\left(3\alpha\right)=3\sin\alpha-4\sin^3\alpha$
2.
$\sin\left(3\alpha\right)=3\cos^2\alpha \cdot \sin \alpha-\sin^3\alpha$
3.
$\sin(4\alpha)=4\sin\alpha \cos\alpha -8\sin^3\alpha \cos\alpha$
4.
$\sin \left(5\alpha\right) = 5\sin\alpha - 20\sin^3\alpha+16\sin^5\alpha$
5.
$\cos3\alpha=4\cos^3\alpha-3\cos\alpha$
6.
$\cos3\alpha=\cos^3\alpha-3\cos\alpha\sin^2\alpha$
7.
$\cos4\alpha = 8\cos^4\alpha-8\cos^2\alpha+1$
8.
$\cos5\alpha=16\cos^5\alpha-20\cos^3\alpha+5\cos\alpha$
9.
$\tan3\alpha=\dfrac{3\tan \alpha-\tan^3\alpha}{1-3\tan^2\alpha}$
10.
$\cot3\alpha=\dfrac{\cot^3\alpha-3\cot\alpha}{3\cot^2\alpha-1}$