Write the products of trigonometric functions as sum of trigonometry expressions.

1.
Sum of sines
$\sin \alpha + \sin \beta = 2 \cdot \sin\dfrac{\alpha+\beta}{2}\cdot \cos \dfrac{\alpha-\beta}{2}$
2.
Difference of sines
$\sin \alpha - \sin \beta = 2\cdot \sin\dfrac{\alpha - \beta}{2} \cdot \cos \dfrac{\alpha+\beta}{2}$
3.
Sum of cosines
$\cos\alpha + \cos\beta = 2 \cdot \cos \dfrac{\alpha+\beta}{2} \cdot \cos \dfrac{\alpha-\beta}{2}$
4.
Difference of cosines
$\cos\alpha - \cos\beta = -2 \cdot \sin \dfrac{\alpha+\beta}{2} \cdot \sin \dfrac{\alpha-\beta}{2}$
5.
Sum of tangents
$\tan \alpha + \tan \beta = \dfrac{\sin(\alpha+\beta)}{\cos\alpha \cdot \cos \beta}$
6.
Difference of tangents
$\tan \alpha - \tan \beta = \dfrac{\sin(\alpha-\beta)}{\cos\alpha \cdot \cos \beta}$
7.
Sum of cotangents
$\cot \alpha + \cot \beta = \dfrac{\sin(\beta + \alpha)}{\sin\alpha \cdot \sin\beta}$
8.
Difference of cotangents
$\cot \alpha - \cot \beta = \dfrac{\sin(\beta - \alpha)}{\sin\alpha \cdot \sin\beta}$
9.
$\cos\alpha + \sin\alpha = \sqrt{2} \cos\left( \frac{\pi}{4}-\alpha\right)$
10.
$\cos\alpha - \sin\alpha = \sqrt{2} \sin\left( \frac{\pi}{4}-\alpha\right)$