All Math Formulas
Search
Login
Home
→
Algebra
→
Complex Numbers
Complex Numbers
We found
17
formulas for complex numbers
Variables
z
→
Complex number
a, c
→
Real part
bi, di
→
Imaginary Part
n
→
Natrural number
i
→
Imaginary unit
1.
Powers of complex numbers
$i^0 = 1, i^1=1, i^2=-1, i^3=-i, i^4=1$
Complex number
2.
Powers of complex numbers
$i^{4n}=1, i^{4n+1}=i, i^{4n+2}=-1, i^{4n+3}=-i$
Complex number
3.
Adding complex numbers
$\left(a+bi\right) + \left(c+di\right) = (a+c)+(b+d)i$
Complex number
4.
Subtracting complex numbers
$(a+bi)-(c+di)=(a-c)+(b-d)i$
Complex number
5.
Multiplying complex numbers
$\left(a+bi\right)\left(c+di\right)=\left(ac-bd\right)+\left(ad+bc\right)i$
Complex number
6.
Dividing complex numbers
$\dfrac{a+bi}{c+di}=\dfrac{ac+bd}{c^2+d^2}+\dfrac{bc-ad}{c^2+d^2}i$
Complex number
7.
Conjugate of a complex number
$\overline{a+bi}=a-bi$
Complex number
8.
Polar representation of a complex number
$a+bi=r\left(\cos \psi + i \sin \psi \right)$
Complex number
Polar form
9.
Modulus of complex number
$r=\left|a+bi\right| = \sqrt{a^2+b^2}$
Complex number
10.
Product in polar representation
$z_1 \cdot z_2 = r_1\left(\cos\psi_1+i\sin\psi_1\right) \cdot r_2\left(\cos\psi_2+i\sin\psi_2\right) = \\ = r_1r_2\left(\cos\left(\psi_1+\psi_2\right)+i\sin\left(\psi_1+\psi_2\right) \right)$
Complex number
Polar form
11.
Conjugate in polar form
$\overline{r\left(\cos\psi+i\sin\psi\right)}=r\left[\cos(-\psi)+i\sin(-\psi\right)]$
Complex number
Polar form
12.
Inverse in polar form
$\dfrac{1}{r\left(\cos\psi + i \sin \psi\right)}=\dfrac{1}{r}\left[ \cos(-\psi)+i\sin(-\psi)\right]$
Complex number
Polar form
13.
Qotient in polar form
$\dfrac{z_1}{z_2} = \dfrac{r_1\left(\cos\psi_1+i\sin\psi_1\right)}{r_2\left(\cos\psi_2+i\sin\psi_2\right)}=\dfrac{r_1}{r_2}\left(\cos(\psi_1-\psi_2) + i\sin(\psi_1-\psi_2)\right)$
Complex number
Polar form
14.
Power in ploar form
$z^n= \left[r \left(\cos\psi+i\sin\psi\right)\right]^n= r^n \left[\cos(n\psi)+i\sin(n\psi)\right]$
Complex number
Polar form
15.
De Moivre Formula
$\left( \cos\psi + i \sin\psi\right)^n= \cos(n\psi) + i \sin(n\psi)$
Complex number
Polar form
16.
N-th root of complex number
$\sqrt[n]z=\sqrt[n]{r(\cos\psi+i\sin\psi)} = \sqrt[n]r \left(\cos\dfrac{\psi+2\pi k}{n} + \sin\dfrac{\psi+2\pi k}{n} \right) \\[1.2 em] k=0,1,2,\dots,n-1$
Complex number
Polar form
17.
Eulers Formula
$e^x=\cos x + i \sin x$
Complex number
Polar form
Add formula to this category
Home
Algebra
Factoring formulas
Product formulas
Exponents formulas
Square roots formulas
Higher roots formulas
Logarithm
Set Identities
Complex Numbers
Logic
Geometry
Equilateral triangle
Isoscales triangle
Right Triangle
Scalene Triangle
Rectangle
Square
Rhombus
Parallelogram
Cyclic Quadrilateral
Circle
Trigonometry
Radians and Degrees
Most Important Formulas
Sum and difference formulas
Double angle formulas
Half-angle formulas
Multiple Angle Formulas
Sum to product
Product To Sum
Power of trigonometric functions
Analytic geometry
Two - dimensional coordinate system
Line in plane
Circle
Ellipse
Hyperbola
Differential Calculas
Limits of Functions
Differentiation rules
Differentiation Formulas
Derivatives of Composite Functions
Higher Order Derivatives
Integral Calculus
Integrals of Rational Functions
Integrals of Irrational Functions
Integrals of Trigonometric Functions
Integrals of exponential and logarithmic functions
Integrals of hyperbolic functions
Series
Arithmetic series
Geometric series
Finite sums
Power series
Factoring formulas
Product formulas
Exponents formulas
Square roots formulas
Higher roots formulas
Logarithm
Set Identities
Complex Numbers
Logic
Equilateral triangle
Isoscales triangle
Right Triangle
Scalene Triangle
Rectangle
Square
Rhombus
Parallelogram
Cyclic Quadrilateral
Circle
Radians and Degrees
Most Important Formulas
Sum and difference formulas
Double angle formulas
Half-angle formulas
Multiple Angle Formulas
Sum to product
Product To Sum
Power of trigonometric functions
Two - dimensional coordinate system
Line in plane
Circle
Ellipse
Hyperbola
Limits of Functions
Differentiation rules
Differentiation Formulas
Derivatives of Composite Functions
Higher Order Derivatives
Integrals of Rational Functions
Integrals of Irrational Functions
Integrals of Trigonometric Functions
Integrals of exponential and logarithmic functions
Integrals of hyperbolic functions
Arithmetic series
Geometric series
Finite sums
Power series