Variables

f, u, v
Functions
n
Integer
1.
Leibnitz's formula
$\left(uv\right)^{\prime\prime}=u^{\prime\prime} v + 2u^\prime v^\prime + u v^{\prime\prime}$
2.
Third derivative of a product
$\left(uv\right)^{\prime\prime\prime} = u^{\prime\prime\prime}v + 3u^{\prime\prime}v^\prime + 3u^\prime v^{\prime\prime} + 3uv^{\prime\prime\prime}$
3.
n-th derivativative of $x^m$
$\left(x^m\right)^{(n)}=\dfrac{m!}{(m-n)!}x^{m-n}$
4.
n-th derivative of $x^n$
$\left(x^n\right)^{(n)}=n!$
5.
n-th derivative of logarithm
$\left( \log_a x\right)^{(n)}=\dfrac{(-1)^{n-1} (n-1)! }{x^n \ln x}$
6.
n-th derivative of natural logarithm
$\left(\ln x \right)^{(n)}=\dfrac{(-1)^{n-1} (n-1)!}{x^n}$
7.
n th derivative od $a^x$
$\left(a^x\right)^{(n)}=a^x \ln^n a$
8.
n-th derivative of $e^x$
$\left(e^x\right)^{(n)}=e^x$
9.
$\left( a^{mx} \right)^{(n)} = m^n a^x \ln^na$
10.
n-th derivativ of sin x
$\left( \sin x \right)^{(n)} = \sin\left(x+\dfrac{n\pi}{2}\right)$
11.
n-th derivative od cos x
$\left( \cos x \right)^{(n)} = \cos\left(x+\dfrac{n\pi}{2}\right)$