1.
$\int \sin xdx=-\cos x + C$
2.
$\int \cos x dx = \sin x + C$
3.
$\int \sin^2 x dx=\dfrac{x}{2}-\dfrac{1}{4}\sin2x+C$
4.
$\int \cos^2 x dx=\dfrac{x}{2}+\dfrac{1}{4}\sin2x+C$
5.
$\int \sin^3x dx=\dfrac{1}{3}\cos^3x-cosx+C$
6.
$\int \sin^3x dx=\dfrac{1}{12}\cos3x-\dfrac{3}{4}\cos x+C$
7.
$\int \cos^3x dx=\sin x - \dfrac{1}{3}\sin^3x+C$
8.
$\int \cos^3x dx = \dfrac{1}{12}\sin 3x +\dfrac{3}{4}\sin x + C$
9.
$\int \dfrac{dx}{\sin x}=\ln\left|\tan\dfrac{x}{2}\right|+C$
10.
$\int \dfrac{dx}{\cos x}=\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C$
11.
$\int \dfrac{dx}{\sin^2 x}=-\cot x + C$
12.
$\int \dfrac{dx}{\cos^2x}=\tan x + C$
13.
$\int \dfrac{dx}{\sin^3x} =-\dfrac{\cos x}{2 \sin^2x}+\dfrac{1}{2}\ln\left|\tan\dfrac{x}{2}\right|+C$
14.
$\int \dfrac{dx}{\cos^3x}=\dfrac{\sin x}{2 \cos^2x}+\dfrac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C$
15.
$\int \sin x \cos x dx = -\dfrac{1}{4}\cos2x+C$
16.
$\int \sin^2x \cos x dx = \frac{1}{3}\sin^3x+C$
17.
$\int \sin x \cos^2x\, dx=-\dfrac{1}{3}\cos^3x + C$
18.
$\int \sin^2x \cos^2x dx = \frac{x}{8}-\frac{1}{32}\sin4x + C$
19.
$\int \tan x \, dx=-\ln|\cos x|+C$
20.
$\int \dfrac{\sin x}{\cos^2x}dx=\dfrac{1}{\cos x}+C$
21.
$\int \dfrac{\sin^2x}{\cos x}dx=\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|-\sin x +C$
22.
$\int \tan^2x dx = \tan x - x + C$
23.
$\int \cot x dx=\ln\left|\sin x\right|+C$
24.
$\int \dfrac{\cos x}{\sin^2x}dx=-\dfrac{1}{\sin x}+C$
25.
$\int \dfrac{\cos^2 x}{\sin x}dx=\ln\left|\tan\dfrac{x}{2}\right|+cosx+C$
26.
$\int \dfrac{dx}{\cos x \sin x}=\ln\left|\tan x\right|+C$
27.
$\int \dfrac{dx}{\sin^2x \cos x} = - \dfrac{1}{\sin x}+\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{2}\right)\right|+C$
28.
$\int \dfrac{dx}{\sin x \cos^2x}=\dfrac{1}{\cos c}+\ln\left|\tan\frac{x}{2}\right|+C$
29.
$\int \dfrac{dx}{\sin^2 x \cos^2x}=\tan x - \cot x + C$
30.
$\int \sin mx \sin nx dx = -\dfrac{\sin(m+n)x}{2(m+n)}+\dfrac{\sin(m-n)x}{2(m-n)} + C, m^2 \ne n^2$
31.
$\int \sin mx \cos nx dx = -\dfrac{\cos(m+n)x}{2(m+n)}-\dfrac{\cos(m-n)x}{2(m-n)} + C, m^2 \ne n^2$
32.
$\int \cos mx \cos nx dx = \dfrac{\sin(m+n)x}{2(m+n)}+\dfrac{\sin(m-n)x}{2(m-n)} + C, m^2 \ne n^2$
33.
$\int \sin x \cos^nx= - \dfrac{\cos^{n+1}x}{n+1}+C$
34.
$\int \sin^n x \cos x= \dfrac{\sin^{n+1}x}{n+1}+C$
35.
Integral of arcsin
$\int \arcsin x dx = x\arcsin x + \sqrt{1-x^2}+C$
36.
Integral of arccos
$\int \arccos x dx = x\arccos x-\sqrt{1-x^2}+C$
37.
Integral of arctan
$\int \arctan x dx = x\arctan x - \dfrac{1}{2}\ln\left(x^2+1\right)+C$