Search

Search results:

541.
Difference of squares
$a^2-b^2=(a-b)(a+b)$
542.
Equation of an Ellipse
$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$
543.
$r_1 + r_2 = 2a$
544.
$a^2 = b^2 + c^2$
545.
Eccentricity
$e=\dfrac{c}{a}$
546.
Equation of Directrices - version 1
$x = \pm \dfrac{a}{e}$
547.
Equation of Directrices - version 2
$x = \pm \dfrac{a^2}{c}$
548.
Parametric form of a ellipse
$\begin{array}{ll} x =& a \cos t \\ y =& b \sin t \end{array} 0\le t \le 2 \pi$
549.
General form of a Ellipse
$Ax^2+Bxy+Cy^2+DX+Ey+F=0$, where $B^2-4AC < 0$
550.
Circumference of an elliplse
$P = 4aE(e)$
551.
Circumference of an elliplse - approximation 1
$P=\pi\left(\dfrac{3}{2}(a+b)-\sqrt{ab}\right)$
552.
Circumference of an elliplse - approximation 2
$P=\pi \sqrt{2\left(a^2+b^2\right)}$
553.
Ellipse area
$A = \pi a b$
554.
Equation of a Hyperbola
$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$
555.
$|r_1-r_2| = 2a$
556.
Equations od Asymptotes
$y=\pm\dfrac{b}{a}x$
557.
$c^2=a^2+b^2$
558.
Hyperbola eccentricity
$e=\dfrac{c}{a}$
559.
Equations of directrices
$x=\pm\dfrac{a}{e}$
560.
Parametric equation of the right branch
$\begin{array}{ll} x = a \cosh t \\[1 em] y=b \sinh t \end{array} 0\le t \le 2\pi$