Variables

n
Number of terms in the sequence
1.
Sum of the first n numbers
$1+2+3+ \cdots + n = \dfrac{n(n+1)}{2}$
2.
Sum of the first n even numbers
$2+4+6+ \cdots + 2n = n(n+1)$
3.
Sum of the first n odd numbers
$1+3+5+\ldots+(2n-1) = n^2$
4.
$k + (k+1) + \ldots + (k+n-1) = \dfrac{n(2k+n-1)}{2}$
5.
Sum of first n squares
$1^2+2^2+3^2+ \ldots + n^2 = \dfrac{n(n+1)(2n+1)}{6}$
6.
Sum of first n cubes
$1^3+2^3+3^3+ \ldots + n^3 = \left(\dfrac{n(n+1)}{2}\right)^2$
7.
Sum of first n odd squares
$1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \dfrac{n(4n^2-1)}{3}$
8.
Sum of first n odd cubes
$1^3+3^3+5^3+ \ldots + (2n-1)^3 = n^2(2n^2-1)$