Variables

a, b
Positive real numbers
m, n
Integers
1.
Root of a product
$\sqrt[n]{ab}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
2.
Root of a fraction
$\sqrt[n]{\dfrac{a}{b}} = \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$
3.
Product of roots
$\sqrt[n]{a} \cdot \sqrt[m]{b} = \sqrt[mn]{a^mb^n}$
4.
Quotione of roots
$\dfrac{\sqrt[n]{a}}{\sqrt[m]{b}}=\sqrt[nm]{\dfrac{a^m}{b^n}}$
5.
Power of a root
$\left(\sqrt[n]{a^m}\right)^p=\sqrt[n]{a^{mp}}$
6.
$\left(\sqrt[n]{a}\right)^n=a$
7.
$\sqrt[n]{a^m}=\sqrt[np]{a^{mp}}$
8.
$\sqrt[n]{a^m}=a^{\frac{m}{n}}$
9.
Root of a root
$\sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]{a}$
10.
Power of a root
$\left(\sqrt[n]{a}\right)^m=\sqrt[n]{a^m}$
11.
Rationalize fractions
$\dfrac{1}{\sqrt[n]{a}}= \dfrac{\sqrt[n]{a^{n-1}}}{a}$