Search

Search results:

281.
$\int \dfrac{xdx}{\sqrt{ax+b}}=\dfrac{2(ax-2b)}{3a^2}\sqrt{ax+b}+C$
282.
$\int \sqrt{\dfrac{ax+b}{cx+d}}dx=\dfrac{1}{c}\sqrt{(ax+b)(cx+d)}-\dfrac{ad-bc}{c\sqrt{ac}}\ln\left|\sqrt{a(cx+d)}+\sqrt{c(ax+b)}\right|+C, a>0$
283.
$\int \sqrt{\dfrac{ax+b}{cx+d}}dx=\dfrac{1}{c}\sqrt{(ax+b)(cx+d)}-\dfrac{ad-bc}{c\sqrt{ac}}\arctan\sqrt\frac{a(cx+d)}{c(ax+b)}+C, a<0,c>0$
284.
$\int \sin xdx=-\cos x + C$
285.
$\int \cos x dx = \sin x + C$
286.
$\int \sin^2 x dx=\dfrac{x}{2}-\dfrac{1}{4}\sin2x+C$
287.
$\int \cos^2 x dx=\dfrac{x}{2}+\dfrac{1}{4}\sin2x+C$
288.
$\int \sin^3x dx=\dfrac{1}{3}\cos^3x-cosx+C$
289.
$\int \sin^3x dx=\dfrac{1}{12}\cos3x-\dfrac{3}{4}\cos x+C$
290.
$\int \cos^3x dx=\sin x - \dfrac{1}{3}\sin^3x+C$
291.
$\int \cos^3x dx = \dfrac{1}{12}\sin 3x +\dfrac{3}{4}\sin x + C$
292.
$\int \dfrac{dx}{\sin x}=\ln\left|\tan\dfrac{x}{2}\right|+C$
293.
$\int \dfrac{dx}{\cos x}=\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C$
294.
$\int \dfrac{dx}{\sin^2 x}=-\cot x + C$
295.
$\int \dfrac{dx}{\cos^2x}=\tan x + C$
296.
$\int \dfrac{dx}{\sin^3x} =-\dfrac{\cos x}{2 \sin^2x}+\dfrac{1}{2}\ln\left|\tan\dfrac{x}{2}\right|+C$
297.
$\int \dfrac{dx}{\cos^3x}=\dfrac{\sin x}{2 \cos^2x}+\dfrac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C$
298.
$\int \sin x \cos x dx = -\dfrac{1}{4}\cos2x+C$
299.
$\int \sin^2x \cos x dx = \frac{1}{3}\sin^3x+C$
300.
$\int \sin x \cos^2x\, dx=-\dfrac{1}{3}\cos^3x + C$