Search

Search results:

421.
Triangle inequality
a+b>ca+c>bb+c>a\begin{aligned} a+b&>c \\ a+c&>b\\b+c&>a \end{aligned}
422.
Triangle inequality
ab<cac<bbc<a\begin{aligned}|a-b| <& c \\ |a-c| <& b \\ |b-c| <& a \end{aligned}
423.
Midline of a triangle
q=a2,qaq=\dfrac{a}{2}, q||a
424.
Law of cosinse for side a
a2=b2+c22bccosγa^2=b^2+c^2-2bc\cos\gamma
425.
Law of cosinse for side b
b2=a2+c22accosβb^2=a^2+c^2-2ac\cos\beta
426.
Law of cosinse for side c
c2=a2+b22abcosγc^2 = a^2 + b^2 - 2ab\cos\gamma
427.
Law of sines
asinα=bsinβ=csinγ=2R\dfrac{a}{\sin\alpha}=\dfrac{b}{\sin\beta}=\dfrac{c}{\sin\gamma}=2R
428.
Circumscribed circle radius
R=a2sinα=b2sinβ=c2sinγR=\dfrac{a}{2\sin\alpha}=\dfrac{b}{2\sin\beta}=\dfrac{c}{2\sin\gamma}
429.
Circumscribed circle radius
R=bc2ha=ac2hb=bc2hcR=\dfrac{bc}{2h_a} = \dfrac{ac}{2h_b} = \dfrac{bc}{2h_c}
430.
Inscribed circle radius
r2=(pa)(pb)(pc)p,   and   p=a+b+c2r^2=\dfrac{(p-a)(p-b)(p-c)}{p}, \,\,\text{ and }\,\, p=\dfrac{a+b+c}{2}
431.
Inscribed circle radius
r=1ha+1hb+1hcr=\dfrac{1}{ha}+\dfrac{1}{h_b}+\dfrac{1}{h_c}
432.
Sine of α/2
sinα2=(pb)(pc)bc, where p=a+b+c2\sin\dfrac{\alpha}{2} = \sqrt{\dfrac{(p-b)(p-c)}{bc}}, \text{ where } p=\dfrac{a+b+c}{2}
433.
Cosine α/2
cosα2=p(pa)bc, where p=a+b+c2\cos\dfrac{\alpha}{2} = \sqrt{\dfrac{p(p-a)}{bc}}, \text{ where } p=\dfrac{a+b+c}{2}
434.
Tangent α/2
tanα2=(pb)(pc)p(pa), where p=a+b+c2\tan \dfrac{\alpha}{2}=\sqrt{\dfrac{(p-b)(p-c)}{p(p-a)}}, \text{ where } p=\dfrac{a+b+c}{2}
435.
Triangle height ha
ha=2ap(pa)(pb)(pc)h_a=\dfrac{2}{a}\sqrt{p(p-a)(p-b)(p-c)}
436.
Triangle height ha
ha=bsinγh_a=b\sin\gamma
437.
Median of a triangle
ma=b2+c22a22m_a=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{2}
438.
Tirangle area - verison 1
A=aha2A=\dfrac{ah_a}{2}
439.
Triangle area - version 2
A=absinγ2A = \dfrac{ab\sin\gamma}{2}
440.
Hereons Formula for triangle area
A=p(pa)(pb)(pc, where p=a+b+c2A = \sqrt{p(p-a)(p-b)(p-c}, \text{ where } p = \dfrac{a+b+c}{2}