Search results:
481.
Radius of a circle
If the circle equation is: $Ax^2+Ay^2+DX+Ey+F=0$ than the radius is equal:
$R = \sqrt{\dfrac{D^2+E^2-4AF}{2|A|}}$
485.
Linearity of differentiation
$\left(af+bg\right)'=af'+bg'$
493.
$\int \sqrt{ax+b}dx=\dfrac{2}{3a}\left(ax+b\right)^{3/2}+C$
494.
$\int x\sqrt{ax+b}dx=\dfrac{2(3ax-2b)}{15a^2}(ax+b)^{3/2}+C$
495.
$\int \dfrac{dx}{(x+c)\sqrt{ax+b}}=\dfrac{1}{\sqrt{b-ac}} \ln\left|\dfrac{\sqrt{ax+b}-\sqrt{b-ac}}{\sqrt{ax+b}+\sqrt{b-ac}}\right|+C, b-ac>0$
496.
$\int \dfrac{dx}{(x+c)\sqrt{ax+b}}=\dfrac{1}{\sqrt{ac-b}}\arctan\sqrt{\dfrac{ax+b}{ac-b}}+C, b-ac<0$
497.
$\int x^2\sqrt{a+bx}dx=\dfrac{2\left(8a^2-12abx+15b^2x^2\right)}{105b^3}\sqrt{(a+bx)^3}+C$
498.
$\int \dfrac{x^2}{\sqrt{a+bx}} = \dfrac{2\left(8a^2-4abx+3b^2x^2\right)}{15b^3}\sqrt{a+bx}+C$