Search results:
361.
                
                                            Qotient in polar form
                                    
                
                    $\dfrac{z_1}{z_2} = \dfrac{r_1\left(\cos\psi_1+i\sin\psi_1\right)}{r_2\left(\cos\psi_2+i\sin\psi_2\right)}=\dfrac{r_1}{r_2}\left(\cos(\psi_1-\psi_2) + i\sin(\psi_1-\psi_2)\right)$                
                
                362.
                
                                            Power in ploar form
                                    
                
                    $z^n= \left[r \left(\cos\psi+i\sin\psi\right)\right]^n= r^n \left[\cos(n\psi)+i\sin(n\psi)\right]$                
                
                363.
                
                                            De Moivre Formula
                                    
                
                    $\left( \cos\psi + i \sin\psi\right)^n=  \cos(n\psi) + i \sin(n\psi)$                
                
                364.
                
                                            N-th root of complex number
                                    
                
                    $\sqrt[n]z=\sqrt[n]{r(\cos\psi+i\sin\psi)} = \sqrt[n]r \left(\cos\dfrac{\psi+2\pi k}{n} + \sin\dfrac{\psi+2\pi k}{n} \right) \\[1.2 em] k=0,1,2,\dots,n-1$                
                
                366.
                
                                            Conjunction
                                    
                
                    $\begin{matrix}    p & q & p \land q \\[0.3 em] T & T & T  \\[0.3 em]  T & F & F \\[0.3 em] F & T & F  \\[0.3 em]  F & F & F \end{matrix}$                
                
                367.
                
                                            Disjunction
                                    
                
                    $\begin{matrix}    p & q & p \lor q \\[0.3 em] T & T & T  \\[0.3 em]  T & F & T \\[0.3 em] F & T & T  \\[0.3 em]  F & F & F \end{matrix}$                
                
                368.
                
                                            Implication
                                    
                
                    $\begin{matrix}    p & q & p \implies q \\[0.3 em] T & T & T  \\[0.3 em]  T & F & F \\[0.3 em] F & T & F  \\[0.3 em]  F & F & T \end{matrix}$                
                
                373.
                
                                            Associativity for conjunction
                                    
                
                    $\left(p \land q\right) \land r \iff p \land \left(q \land r\right)$                
                
                374.
                
                                            Associativity for disjunction
                                    
                
                    $\left(p \lor q\right) \lor r \iff p \lor \left(q \lor r\right)$