Search

Search results:

361.
Qotient in polar form
$\dfrac{z_1}{z_2} = \dfrac{r_1\left(\cos\psi_1+i\sin\psi_1\right)}{r_2\left(\cos\psi_2+i\sin\psi_2\right)}=\dfrac{r_1}{r_2}\left(\cos(\psi_1-\psi_2) + i\sin(\psi_1-\psi_2)\right)$
362.
Power in ploar form
$z^n= \left[r \left(\cos\psi+i\sin\psi\right)\right]^n= r^n \left[\cos(n\psi)+i\sin(n\psi)\right]$
363.
De Moivre Formula
$\left( \cos\psi + i \sin\psi\right)^n= \cos(n\psi) + i \sin(n\psi)$
364.
N-th root of complex number
$\sqrt[n]z=\sqrt[n]{r(\cos\psi+i\sin\psi)} = \sqrt[n]r \left(\cos\dfrac{\psi+2\pi k}{n} + \sin\dfrac{\psi+2\pi k}{n} \right) \\[1.2 em] k=0,1,2,\dots,n-1$
365.
Eulers Formula
$e^x=\cos x + i \sin x$
366.
Conjunction
$\begin{matrix} p & q & p \land q \\[0.3 em] T & T & T \\[0.3 em] T & F & F \\[0.3 em] F & T & F \\[0.3 em] F & F & F \end{matrix}$
367.
Disjunction
$\begin{matrix} p & q & p \lor q \\[0.3 em] T & T & T \\[0.3 em] T & F & T \\[0.3 em] F & T & T \\[0.3 em] F & F & F \end{matrix}$
368.
Implication
$\begin{matrix} p & q & p \implies q \\[0.3 em] T & T & T \\[0.3 em] T & F & F \\[0.3 em] F & T & F \\[0.3 em] F & F & T \end{matrix}$
369.
Law of noncontradiction
$p \land \lnot p = F$
370.
Double Negation
$\lnot \left(\lnot p \right) \iff p$
371.
Commutativity for conjunction
$p \land q \iff q \land p$
372.
Commutativity for disjunction
$p \lor q \iff q \lor p$
373.
Associativity for conjunction
$\left(p \land q\right) \land r \iff p \land \left(q \land r\right)$
374.
Associativity for disjunction
$\left(p \lor q\right) \lor r \iff p \lor \left(q \lor r\right)$
375.
Conjunction idempotence
$p \land p \iff p$
376.
Disjunction idempotence
$p \lor p \iff p$
377.
Distributive Property
$p \land ( q \lor r) \iff (p \land q) \lor (p \land r)$
378.
Distributive Property
$p \lor ( q \land r) \iff (p \lor q) \land (p \lor r)$
379.
Implication is transitive
$(p \implies q) \land (q \implies r) \implies p \implies r$
380.
Negation of implication
$\lnot (p \implies r) \iff p \land \lnot q$