Search

Search results:

101.
Product of sine and cosine
sinαcosβ=12[sin(αβ)+sin(α+β)]\sin\alpha \cdot \cos \beta = \dfrac{1}{2} \left[ \sin(\alpha-\beta) + \sin(\alpha + \beta) \right]
102.
Product of tangents
tanαtanβ=tanα+tanβcotα+cotβ\tan\alpha \cdot \tan\beta = \dfrac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta}
103.
Product of cotangents
cotαcotβ=cotα+cotβtanα+tanβ\cot\alpha \cdot \cot\beta = \dfrac{\cot \alpha + \cot \beta}{\tan \alpha + \tan \beta}
104.
Product of tangent and cotangents
tanαcotβ=tanα+cotβcotα+tanβ\tan\alpha \cdot \cot\beta = \dfrac{\tan\alpha + \cot\beta}{\cot\alpha+\tan\beta}
105.
AIA \sub I
106.
AAA \sub A
107.
Empty set
A\emptyset \sub A
108.
Union of sets
AB={x:xA  or  xB}A \cup B= \{x : x \in A \; \text{or} \; x \in B \}
109.
Intersection of sets
AB={x:xA  and  xB}A \cap B= \{x : x \in A \; \text{and} \; x \in B \}
110.
Difference of sets
AB={x:xAandxB}A \setminus B = \{ x : x\in A \, \text{and} \, x\notin B\}
111.
Set commutativity
AB=BAA \cup B = B \cup A
112.
Set commutativity
AB=BAA \cap B = B \cap A
113.
Set associativity
A(BC)=(AB)CA \cup \left(B \cup C \right) = \left( A \cup B \right) \cup C
114.
Set associativity
A(BC)=(AB)CA \cap \left(B \cap C \right) = \left( A \cap B \right) \cap C
115.
Set distributivity
A(BC)=(AB)(AC)A \cup \left(B \cap C\right) = \left(A \cup B \right) \cap \left(A \cup C \right)
116.
Set distributivity
A(BC)=(AB)(AC)A \cap \left(B \cup C\right) = \left(A \cap B \right) \cup \left(A \cap C \right)
117.
Idempotency
AA=AA \cup A = A
118.
Idempotency
AA=AA \cap A = A
119.
Domination
A=AA \cap \empty = A
120.
Domination
AI=IA \cup I = I