Search

Search results:

101.
$\cos^2\alpha=\dfrac{1+\cos2\alpha}{2}$
102.
$\cos3\alpha=\dfrac{3\cos\alpha+\cos3\alpha}{4}$
103.
$\cos^4\alpha=\dfrac{\cos4\alpha+4\cos2\alpha+3}{8}$
104.
$\cos^5\alpha=\dfrac{10\cos\alpha+5\sin3\alpha+\cos5\alpha}{16}$
105.
$\cos^6\alpha=\dfrac{10+15\cos2\alpha+6\cos4\alpha+\cos6\alpha}{32}$
106.
Sine definition
$\sin\alpha = \dfrac{a}{c}$
107.
Cosine definition
$\cos\alpha = \dfrac{b}{c}$
108.
Tangent definition
$\tan\alpha = \dfrac{a}{b}$
109.
Sine of α/2
$\sin\dfrac{\alpha}{2} = \sqrt{\dfrac{(p-b)(p-c)}{bc}}, \text{ where } p=\dfrac{a+b+c}{2}$
110.
Cosine α/2
$\cos\dfrac{\alpha}{2} = \sqrt{\dfrac{p(p-a)}{bc}}, \text{ where } p=\dfrac{a+b+c}{2}$
111.
Tangent α/2
$\tan \dfrac{\alpha}{2}=\sqrt{\dfrac{(p-b)(p-c)}{p(p-a)}}, \text{ where } p=\dfrac{a+b+c}{2}$
112.
Triangle height ha
$h_a=\dfrac{2}{a}\sqrt{p(p-a)(p-b)(p-c)}$
113.
Triangle height ha
$h_a=b\sin\gamma$
114.
Median of a triangle
$m_a=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{2}$
115.
Triangle area - version 2
$A = \dfrac{ab\sin\gamma}{2}$
116.
Triangle area - version 5
$A = 2R^2\sin\alpha \sin\beta \sin\gamma$
117.
$\lim_{x\to 0} \dfrac{\sin ax}{bx}=\dfrac{a}{b}$
118.
$\lim_{x\to\infty} x \sin \left( \dfrac{1}{x} \right) = 1$
119.
$\int e^{ax} \sin bx dx = \dfrac{a\sin bx - b \cos bx}{a^2+b^2} e^{ax} + C $
120.
$\int e^{ax} \cos bx dx = \dfrac{a\cos bx - b \sin bx}{a^2+b^2} e^{ax} + C $