All Math Formulas
Search
Login
Home
→
Search
Search formulas
Formula name
Grade
Select Grade
Grade 1
Grade 2
Grade 3
Grade 4
Grade 5
Grade 6
Grade 7
Grade 8
Grade 9
Grade 10
Grade 11
Grade 12
College
Selected tags:
Trigonometry
Search Tags
Analytic geometry
Angle
Arc
Area
Arithmetic Series
Asymptotes
Circle
Circumcircle R
Complex number
Cyclic quadrilateral
Degree
Diagonal
Differentiation
Differentiation rule
Distance
Double angle
E
Ellipse
Equation
Exponents
Factoring
Finite sum
Foci
Geometric series
Geometric Series
Half angle
Height
Height
Hyperbola
Hyperbolic fun
Incircle r
Indefinite Integral
Irrational Function
Limit
Line
Logarithm
Logic
Medians
Parallelogram
Perimeter
Polar form
Polynomial
Power
Power series
Quadrilateral
Radian
Rational Function
Rectangle
Rhombus
Right triangle
Root
Sector
Segment
Series
Sets
Side
Square
Square root
Triangle
Trigonometry
Search
Search results:
81.
∫
cot
x
d
x
=
ln
∣
sin
x
∣
+
C
\int \cot x dx=\ln\left|\sin x\right|+C
∫
cot
x
d
x
=
ln
∣
sin
x
∣
+
C
Indefinite Integral
Trigonometry
82.
∫
cos
x
sin
2
x
d
x
=
−
1
sin
x
+
C
\int \dfrac{\cos x}{\sin^2x}dx=-\dfrac{1}{\sin x}+C
∫
sin
2
x
cos
x
d
x
=
−
sin
x
1
+
C
Indefinite Integral
Trigonometry
83.
∫
cos
2
x
sin
x
d
x
=
ln
∣
tan
x
2
∣
+
c
o
s
x
+
C
\int \dfrac{\cos^2 x}{\sin x}dx=\ln\left|\tan\dfrac{x}{2}\right|+cosx+C
∫
sin
x
cos
2
x
d
x
=
ln
tan
2
x
+
cos
x
+
C
Indefinite Integral
Trigonometry
84.
∫
d
x
cos
x
sin
x
=
ln
∣
tan
x
∣
+
C
\int \dfrac{dx}{\cos x \sin x}=\ln\left|\tan x\right|+C
∫
cos
x
sin
x
d
x
=
ln
∣
tan
x
∣
+
C
Indefinite Integral
Trigonometry
85.
∫
d
x
sin
2
x
cos
x
=
−
1
sin
x
+
ln
∣
tan
(
x
2
+
π
2
)
∣
+
C
\int \dfrac{dx}{\sin^2x \cos x} = - \dfrac{1}{\sin x}+\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{2}\right)\right|+C
∫
sin
2
x
cos
x
d
x
=
−
sin
x
1
+
ln
tan
(
2
x
+
2
π
)
+
C
Indefinite Integral
Trigonometry
86.
∫
d
x
sin
x
cos
2
x
=
1
cos
c
+
ln
∣
tan
x
2
∣
+
C
\int \dfrac{dx}{\sin x \cos^2x}=\dfrac{1}{\cos c}+\ln\left|\tan\frac{x}{2}\right|+C
∫
sin
x
cos
2
x
d
x
=
cos
c
1
+
ln
tan
2
x
+
C
Indefinite Integral
Trigonometry
87.
∫
d
x
sin
2
x
cos
2
x
=
tan
x
−
cot
x
+
C
\int \dfrac{dx}{\sin^2 x \cos^2x}=\tan x - \cot x + C
∫
sin
2
x
cos
2
x
d
x
=
tan
x
−
cot
x
+
C
Indefinite Integral
Trigonometry
88.
∫
sin
m
x
sin
n
x
d
x
=
−
sin
(
m
+
n
)
x
2
(
m
+
n
)
+
sin
(
m
−
n
)
x
2
(
m
−
n
)
+
C
,
m
2
≠
n
2
\int \sin mx \sin nx dx = -\dfrac{\sin(m+n)x}{2(m+n)}+\dfrac{\sin(m-n)x}{2(m-n)} + C, m^2 \ne n^2
∫
sin
m
x
sin
n
x
d
x
=
−
2
(
m
+
n
)
sin
(
m
+
n
)
x
+
2
(
m
−
n
)
sin
(
m
−
n
)
x
+
C
,
m
2
=
n
2
Indefinite Integral
Trigonometry
89.
∫
cos
m
x
cos
n
x
d
x
=
sin
(
m
+
n
)
x
2
(
m
+
n
)
+
sin
(
m
−
n
)
x
2
(
m
−
n
)
+
C
,
m
2
≠
n
2
\int \cos mx \cos nx dx = \dfrac{\sin(m+n)x}{2(m+n)}+\dfrac{\sin(m-n)x}{2(m-n)} + C, m^2 \ne n^2
∫
cos
m
x
cos
n
x
d
x
=
2
(
m
+
n
)
sin
(
m
+
n
)
x
+
2
(
m
−
n
)
sin
(
m
−
n
)
x
+
C
,
m
2
=
n
2
Indefinite Integral
Trigonometry
90.
∫
sin
x
cos
n
x
=
−
cos
n
+
1
x
n
+
1
+
C
\int \sin x \cos^nx= - \dfrac{\cos^{n+1}x}{n+1}+C
∫
sin
x
cos
n
x
=
−
n
+
1
cos
n
+
1
x
+
C
Indefinite Integral
Trigonometry
91.
∫
sin
n
x
cos
x
=
sin
n
+
1
x
n
+
1
+
C
\int \sin^n x \cos x= \dfrac{\sin^{n+1}x}{n+1}+C
∫
sin
n
x
cos
x
=
n
+
1
sin
n
+
1
x
+
C
Indefinite Integral
Trigonometry
92.
Integral of arcsin
∫
arcsin
x
d
x
=
x
arcsin
x
+
1
−
x
2
+
C
\int \arcsin x dx = x\arcsin x + \sqrt{1-x^2}+C
∫
arcsin
x
d
x
=
x
arcsin
x
+
1
−
x
2
+
C
Indefinite Integral
Trigonometry
93.
∫
sin
m
x
cos
n
x
d
x
=
−
cos
(
m
+
n
)
x
2
(
m
+
n
)
−
cos
(
m
−
n
)
x
2
(
m
−
n
)
+
C
,
m
2
≠
n
2
\int \sin mx \cos nx dx = -\dfrac{\cos(m+n)x}{2(m+n)}-\dfrac{\cos(m-n)x}{2(m-n)} + C, m^2 \ne n^2
∫
sin
m
x
cos
n
x
d
x
=
−
2
(
m
+
n
)
cos
(
m
+
n
)
x
−
2
(
m
−
n
)
cos
(
m
−
n
)
x
+
C
,
m
2
=
n
2
Indefinite Integral
Trigonometry
94.
Integral of arccos
∫
arccos
x
d
x
=
x
arccos
x
−
1
−
x
2
+
C
\int \arccos x dx = x\arccos x-\sqrt{1-x^2}+C
∫
arccos
x
d
x
=
x
arccos
x
−
1
−
x
2
+
C
Indefinite Integral
Trigonometry
95.
Integral of arctan
∫
arctan
x
d
x
=
x
arctan
x
−
1
2
ln
(
x
2
+
1
)
+
C
\int \arctan x dx = x\arctan x - \dfrac{1}{2}\ln\left(x^2+1\right)+C
∫
arctan
x
d
x
=
x
arctan
x
−
2
1
ln
(
x
2
+
1
)
+
C
Indefinite Integral
Trigonometry
96.
sin
2
α
=
1
−
cos
2
α
2
\sin^2\alpha = \dfrac{1-\cos2\alpha}{2}
sin
2
α
=
2
1
−
cos
2
α
Power
Trigonometry
97.
sin
3
α
=
3
sin
α
−
sin
3
α
4
\sin^3\alpha = \dfrac{3\sin\alpha - \sin 3\alpha}{4}
sin
3
α
=
4
3
sin
α
−
sin
3
α
Power
Trigonometry
98.
sin
4
α
=
cos
4
α
−
4
cos
2
α
+
3
8
\sin^4\alpha = \dfrac{\cos4\alpha-4\cos2\alpha+3}{8}
sin
4
α
=
8
cos
4
α
−
4
cos
2
α
+
3
Power
Trigonometry
99.
sin
5
α
=
10
sin
α
−
5
sin
3
α
+
sin
5
α
16
\sin^5\alpha = \dfrac{10\sin\alpha - 5\sin3\alpha + \sin 5\alpha}{16}
sin
5
α
=
16
10
sin
α
−
5
sin
3
α
+
sin
5
α
Power
Trigonometry
100.
sin
6
α
=
10
−
15
cos
2
α
+
6
cos
4
α
−
cos
6
α
32
\sin^6\alpha = \dfrac{10-15\cos2\alpha+6\cos4\alpha-\cos6\alpha}{32}
sin
6
α
=
32
10
−
15
cos
2
α
+
6
cos
4
α
−
cos
6
α
Power
Trigonometry
‹
1
2
3
4
5
6
›
Home
Algebra
Factoring formulas
Product formulas
Exponents formulas
Square roots formulas
Higher roots formulas
Logarithm
Set Identities
Complex Numbers
Logic
Geometry
Equilateral triangle
Isoscales triangle
Right Triangle
Scalene Triangle
Rectangle
Square
Rhombus
Parallelogram
Cyclic Quadrilateral
Circle
Trigonometry
Radians and Degrees
Most Important Formulas
Sum and difference formulas
Double angle formulas
Half-angle formulas
Multiple Angle Formulas
Sum to product
Product To Sum
Power of trigonometric functions
Analytic geometry
Two - dimensional coordinate system
Line in plane
Circle
Ellipse
Hyperbola
Differential Calculas
Limits of Functions
Differentiation rules
Differentiation Formulas
Derivatives of Composite Functions
Higher Order Derivatives
Integral Calculus
Integrals of Rational Functions
Integrals of Irrational Functions
Integrals of Trigonometric Functions
Integrals of exponential and logarithmic functions
Integrals of hyperbolic functions
Series
Arithmetic series
Geometric series
Finite sums
Power series
Factoring formulas
Product formulas
Exponents formulas
Square roots formulas
Higher roots formulas
Logarithm
Set Identities
Complex Numbers
Logic
Equilateral triangle
Isoscales triangle
Right Triangle
Scalene Triangle
Rectangle
Square
Rhombus
Parallelogram
Cyclic Quadrilateral
Circle
Radians and Degrees
Most Important Formulas
Sum and difference formulas
Double angle formulas
Half-angle formulas
Multiple Angle Formulas
Sum to product
Product To Sum
Power of trigonometric functions
Two - dimensional coordinate system
Line in plane
Circle
Ellipse
Hyperbola
Limits of Functions
Differentiation rules
Differentiation Formulas
Derivatives of Composite Functions
Higher Order Derivatives
Integrals of Rational Functions
Integrals of Irrational Functions
Integrals of Trigonometric Functions
Integrals of exponential and logarithmic functions
Integrals of hyperbolic functions
Arithmetic series
Geometric series
Finite sums
Power series
Toggle