Search

Search results:

81.
$\int \cot x dx=\ln\left|\sin x\right|+C$
82.
$\int \dfrac{\cos x}{\sin^2x}dx=-\dfrac{1}{\sin x}+C$
83.
$\int \dfrac{\cos^2 x}{\sin x}dx=\ln\left|\tan\dfrac{x}{2}\right|+cosx+C$
84.
$\int \dfrac{dx}{\cos x \sin x}=\ln\left|\tan x\right|+C$
85.
$\int \dfrac{dx}{\sin^2x \cos x} = - \dfrac{1}{\sin x}+\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{2}\right)\right|+C$
86.
$\int \dfrac{dx}{\sin x \cos^2x}=\dfrac{1}{\cos c}+\ln\left|\tan\frac{x}{2}\right|+C$
87.
$\int \dfrac{dx}{\sin^2 x \cos^2x}=\tan x - \cot x + C$
88.
$\int \sin mx \sin nx dx = -\dfrac{\sin(m+n)x}{2(m+n)}+\dfrac{\sin(m-n)x}{2(m-n)} + C, m^2 \ne n^2$
89.
$\int \cos mx \cos nx dx = \dfrac{\sin(m+n)x}{2(m+n)}+\dfrac{\sin(m-n)x}{2(m-n)} + C, m^2 \ne n^2$
90.
$\int \sin x \cos^nx= - \dfrac{\cos^{n+1}x}{n+1}+C$
91.
$\int \sin^n x \cos x= \dfrac{\sin^{n+1}x}{n+1}+C$
92.
Integral of arcsin
$\int \arcsin x dx = x\arcsin x + \sqrt{1-x^2}+C$
93.
$\int \sin mx \cos nx dx = -\dfrac{\cos(m+n)x}{2(m+n)}-\dfrac{\cos(m-n)x}{2(m-n)} + C, m^2 \ne n^2$
94.
Integral of arccos
$\int \arccos x dx = x\arccos x-\sqrt{1-x^2}+C$
95.
Integral of arctan
$\int \arctan x dx = x\arctan x - \dfrac{1}{2}\ln\left(x^2+1\right)+C$
96.
$\sin^2\alpha = \dfrac{1-\cos2\alpha}{2}$
97.
$\sin^3\alpha = \dfrac{3\sin\alpha - \sin 3\alpha}{4}$
98.
$\sin^4\alpha = \dfrac{\cos4\alpha-4\cos2\alpha+3}{8}$
99.
$\sin^5\alpha = \dfrac{10\sin\alpha - 5\sin3\alpha + \sin 5\alpha}{16}$
100.
$\sin^6\alpha = \dfrac{10-15\cos2\alpha+6\cos4\alpha-\cos6\alpha}{32}$