Search

Search results:

41.
Difference of cosines
$\cos\alpha - \cos\beta = -2 \cdot \sin \dfrac{\alpha+\beta}{2} \cdot \sin \dfrac{\alpha-\beta}{2}$
42.
Sum of tangents
$\tan \alpha + \tan \beta = \dfrac{\sin(\alpha+\beta)}{\cos\alpha \cdot \cos \beta}$
43.
Difference of tangents
$\tan \alpha - \tan \beta = \dfrac{\sin(\alpha-\beta)}{\cos\alpha \cdot \cos \beta}$
44.
Sum of cotangents
$\cot \alpha + \cot \beta = \dfrac{\sin(\beta + \alpha)}{\sin\alpha \cdot \sin\beta}$
45.
Difference of cotangents
$\cot \alpha - \cot \beta = \dfrac{\sin(\beta - \alpha)}{\sin\alpha \cdot \sin\beta}$
46.
$\cos\alpha + \sin\alpha = \sqrt{2} \cos\left( \frac{\pi}{4}-\alpha\right)$
47.
$\cos\alpha - \sin\alpha = \sqrt{2} \sin\left( \frac{\pi}{4}-\alpha\right)$
48.
Product of sines
$\sin\alpha \cdot \sin \beta = \dfrac{1}{2} \left[ \cos(\alpha-\beta) - \cos(\alpha + \beta) \right]$
49.
Product of cosines
$\cos\alpha \cdot \cos \beta = \dfrac{1}{2} \left[ \cos(\alpha-\beta) + \cos(\alpha + \beta) \right]$
50.
Product of sine and cosine
$\sin\alpha \cdot \cos \beta = \dfrac{1}{2} \left[ \sin(\alpha-\beta) + \sin(\alpha + \beta) \right]$
51.
Product of tangents
$\tan\alpha \cdot \tan\beta = \dfrac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta}$
52.
Product of cotangents
$\cot\alpha \cdot \cot\beta = \dfrac{\cot \alpha + \cot \beta}{\tan \alpha + \tan \beta}$
53.
Product of tangent and cotangents
$\tan\alpha \cdot \cot\beta = \dfrac{\tan\alpha + \cot\beta}{\cot\alpha+\tan\beta}$
54.
$\lim_{x\to 0} \dfrac{\sin x}{x}=1$
55.
$\lim_{x \to 0} \dfrac{1-\cos x}{x}=0$
56.
$\lim_{x \to 0} \dfrac{1-\cos x}{x^2}=\dfrac{1}{2}$
57.
$\lim{x \to 0} \dfrac{\tan x}{x}=1$
58.
$\lim{x \to 0} \dfrac{\tan ax}{bx}=\dfrac{a}{b}$
59.
$\int \sin xdx=-\cos x + C$
60.
$\int \cos x dx = \sin x + C$