Search results:
42.
Circumcenter of a triangle
$(x , y) = \left( ~ \frac{\begin{vmatrix} x_1^2+y_1^2 & y_1 & 1 \\ x_2^2+y_2^2 & y_2 & 1 \\ x_3^2+y_3^2 & y_3 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~,~ \frac{\begin{vmatrix} x_1 & x_1^2+y_1^2 & 1 \\ x_2 & x_2^2+y_2^2 & 1 \\ x_3 & x_3^2+y_3^2 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~ \right)$
43.
Orthocenter of a triangle
$(x , y) = \left( ~ \frac{\begin{vmatrix} y_1 & x_2x_3+y_1^2 & 1 \\ y_2 & x_3x_1 + y_2^2 & 1 \\ y_3 & x_1x_2+y_3^2 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~,~ \frac{\begin{vmatrix} x_1^2+y_2y_3 & x_1 & 1 \\ x_2^2+y_3y_1 & x_2 & 1 \\ x_3^2+y_1y_2 & x_3 & 1 \\ \end{vmatrix}} {2 \cdot \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix}}~ \right)$
44.
Area of a triangle
$A = \dfrac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\[0.3em] x_2 & y_2 & 1 \\[0.3em] x_3 & y_3 & 1 \end{vmatrix}$