Search

Search results:

1.
11x=1+x+x2+x3+1<x<1\dfrac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots \quad -1 < x < 1
2.
1(1+x)2=12x+3x24x3+1<x<1\dfrac{1}{(1+x)^2} = 1 - 2x + 3x^2 - 4x^3 + \cdots \quad -1 < x < 1
3.
1(1x)2=1+2x+3x2+4x3+1<x<1\dfrac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \cdots \quad -1 < x < 1
4.
1(1+x)3=13x+6x210x3+1<x<1\dfrac{1}{(1+x)^3} = 1 - 3x + 6x^2 - 10x^3 + \cdots \quad -1 < x < 1
5.
ex=1+x+x22!+x33!+e^x = 1 + x + \dfrac{x^2}{2!} + \dfrac{x^3}{3!} + \cdots
6.
ax=1+xlna+(xlna)22!+(xlna)33!+a^x = 1 + x\,\ln a + \dfrac{(x\,\ln a)^2}{2!} + \dfrac{(x\,\ln a)^3}{3!} + \cdots
7.
ln(1+x)=xx22+x33x44+1<x1\ln(1+x) = x - \dfrac{x^2}{2} + \dfrac{x^3}{3} - \dfrac{x^4}{4} + \cdots \quad -1 < x \leq 1
8.
sinx=xx33!+x55!x77!+\sin x = x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + \cdots
9.
cosx=1x22!+x44!x66!+\cos x = 1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + \cdots
10.
arcsinx=x+12x33+1324x55+135246x77+1<x<1\arcsin x = x + \dfrac{1}{2}\dfrac{x^3}{3} + \dfrac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dfrac{1\cdot3\cdot5}{2\cdot4\cdot6}\frac{x^7}{7} + \cdots \quad -1 < x <1
11.
cothx=1x+x3x345+(1)n122nBnx2n1(2n)!+0<x<π\coth x = \dfrac{1}{x} + \dfrac{x}{3} - \dfrac{x^3}{45} + \cdots \dfrac{(-1)^{n-1} 2^{2n}B_nx^{2n-1}}{(2n)!} + \cdots \quad 0 < |x| < \pi
12.
tanhx=xx33+2x515+(1)n122n(22n1)Bnx2n1(2n)!+x<π2\tanh x = x - \dfrac{x^3}{3} + \dfrac{2x^5}{15} + \cdots \dfrac{(-1)^{n-1} 2^{2n}\left(2^{2n}-1\right)B_nx^{2n-1}}{(2n)!} + \cdots \quad |x| < \frac{\pi}{2}
13.
coshx=1+x22!+x44!+\cosh x = 1 + \dfrac{x^2}{2!} + \dfrac{x^4}{4!} + \cdots
14.
sinhx=x+x33!+x55!+\sinh x = x + \dfrac{x^3}{3!} + \dfrac{x^5}{5!} + \cdots
15.
arccosx=π2arcsinx=π2(x+12x33+1324x55+)1<x<1\arccos x = \dfrac{\pi}{2} - \arcsin x = \dfrac{\pi}{2} - \left(x + \dfrac{1}{2}\dfrac{x^3}{3} + \dfrac{1\cdot3}{2\cdot4}\frac{x^5}{5}+\cdots \right) \quad -1 < x < 1
16.
ln(1+x)=(x1x)+12(x1x)2+13(x1x)3+x12\ln(1+x) = \left(\dfrac{x-1}{x}\right) + \frac{1}{2}\left(\dfrac{x-1}{x}\right)^2 + \dfrac{1}{3}\left(\dfrac{x-1}{x}\right)^3 + \cdots \quad x \geq \frac{1}{2}
17.
cotx=1xx3x34522nBnx2n1(2n)!0<x<π\cot x = \dfrac{1}{x} - \dfrac{x}{3} - \dfrac{x^3}{45} - \cdots - \frac{2^{2n}B_nx^{2n-1}}{(2n)!} \quad 0 < x < \pi
18.
1(1x)3=1+3x+6x2+10x3+1<x<1\dfrac{1}{(1-x)^3} = 1 + 3x + 6x^2 + 10x^3 + \cdots \quad -1 < x < 1
19.
11+x=112x+1324x2135246x3+1<x1\dfrac{1}{\sqrt{1+x}} = 1 - \dfrac{1}{2}x + \dfrac{1\cdot 3}{2\cdot 4}x^2 - \dfrac{1\cdot 3 \cdot 5}{2\cdot 4 \cdot 6}x^3 + \cdots \quad -1 < x \leq 1
20.
1+x=1+12x124x2+13246x3+1<x1\sqrt{1+x} = 1 + \dfrac{1}{2}x - \dfrac{1}{2\cdot 4}x^2 + \dfrac{1\cdot 3}{2\cdot 4 \cdot 6}x^3 + \cdots \quad -1 < x \leq 1