All Math Formulas
Search
Login
Home
→
Differential Calculas
→
Limits of Functions
Limits of Functions
We found
24
formulas for limits of functions
1.
lim
x
→
0
sin
x
x
=
1
\lim_{x\to 0} \dfrac{\sin x}{x}=1
lim
x
→
0
x
sin
x
=
1
Limit
Trigonometry
2.
lim
x
→
0
sin
a
x
b
x
=
a
b
\lim_{x\to 0} \dfrac{\sin ax}{bx}=\dfrac{a}{b}
lim
x
→
0
b
x
sin
a
x
=
b
a
Limit
Trigonometry
Variables:
a
→
Real number
b
→
Real number ≠ 0
3.
lim
x
→
∞
x
sin
(
1
x
)
=
1
\lim_{x\to\infty} x \sin \left( \dfrac{1}{x} \right) = 1
lim
x
→
∞
x
sin
(
x
1
)
=
1
Limit
Trigonometry
4.
lim
x
→
0
1
−
cos
x
x
=
0
\lim_{x \to 0} \dfrac{1-\cos x}{x}=0
lim
x
→
0
x
1
−
cos
x
=
0
Limit
Trigonometry
5.
lim
x
→
0
1
−
cos
x
x
2
=
1
2
\lim_{x \to 0} \dfrac{1-\cos x}{x^2}=\dfrac{1}{2}
lim
x
→
0
x
2
1
−
cos
x
=
2
1
Limit
Trigonometry
6.
lim
x
→
0
tan
x
x
=
1
\lim{x \to 0} \dfrac{\tan x}{x}=1
lim
x
→
0
x
tan
x
=
1
Limit
Trigonometry
7.
lim
x
→
0
tan
a
x
b
x
=
a
b
\lim{x \to 0} \dfrac{\tan ax}{bx}=\dfrac{a}{b}
lim
x
→
0
b
x
tan
a
x
=
b
a
Limit
Trigonometry
Variables:
a
→
Real number
b
→
Real number ≠ 0
8.
lim
x
→
∞
(
1
+
1
x
)
x
=
e
\lim{x \to \infty} \left(1+\dfrac{1}{x}\right)^x=e
lim
x
→
∞
(
1
+
x
1
)
x
=
e
E
Limit
9.
lim
x
→
∞
(
1
−
1
x
)
x
=
1
e
\lim{x\to\infty}\left(1-\dfrac{1}{x}\right)^x=\dfrac{1}{e}
lim
x
→
∞
(
1
−
x
1
)
x
=
e
1
Limit
E
10.
lim
x
→
∞
(
1
+
k
x
)
m
x
=
e
k
m
\lim{x \to \infty}\left(1+\dfrac{k}{x}\right)^{mx}=e^{km}
lim
x
→
∞
(
1
+
x
k
)
m
x
=
e
km
E
Limit
Variables:
k, m
→
Real numbers
11.
lim
x
→
0
(
1
+
x
)
1
x
=
e
\lim{x \to 0}\left(1+x\right)^\frac{1}{x} = e
lim
x
→
0
(
1
+
x
)
x
1
=
e
E
Limit
12.
lim
x
→
0
(
1
+
k
x
)
m
x
=
e
k
m
\lim{x \to 0}\left(1+kx\right)^\frac{m}{x}=e^{km}
lim
x
→
0
(
1
+
k
x
)
x
m
=
e
km
E
Limit
13.
lim
x
→
∞
(
x
x
+
k
)
x
=
e
−
k
\lim {x \to \infty}\left(\dfrac{x}{x+k}\right)^x=e^{-k}
lim
x
→
∞
(
x
+
k
x
)
x
=
e
−
k
E
Limit
Variables:
k
→
Real number
14.
lim
x
→
∞
x
e
x
=
0
\lim{x \to \infty} \dfrac{x}{e^x} = 0
lim
x
→
∞
e
x
x
=
0
E
Limit
15.
lim
x
→
0
(
e
x
−
1
x
)
=
1
\lim{x \to 0} \left(\dfrac{e^x-1}{x}\right) = 1
lim
x
→
0
(
x
e
x
−
1
)
=
1
E
Limit
16.
lim
x
→
0
(
a
x
−
1
x
)
=
ln
a
\lim{x \to 0} \left(\dfrac{a^x-1}{x}\right)=\ln a
lim
x
→
0
(
x
a
x
−
1
)
=
ln
a
Limit
Logarithm
Variables:
a
→
Positive number
17.
lim
x
→
0
(
e
a
x
−
1
x
)
=
a
\lim {x \to 0} \left(\dfrac{e^{ax}-1}{x}\right)=a
lim
x
→
0
(
x
e
a
x
−
1
)
=
a
E
Limit
18.
lim
x
→
1
(
ln
x
x
−
1
)
=
1
\lim{x \to 1} \left( \dfrac{\ln x}{x-1} \right)=1
lim
x
→
1
(
x
−
1
ln
x
)
=
1
Limit
Logarithm
19.
lim
x
→
0
ln
(
x
+
1
)
x
=
1
\lim{x \to 0} \dfrac{\ln(x+1)}{x}=1
lim
x
→
0
x
ln
(
x
+
1
)
=
1
Limit
Logarithm
20.
lim
x
→
0
+
x
ln
x
=
0
\lim{x \to 0^+}x\ln x = 0
lim
x
→
0
+
x
ln
x
=
0
Limit
Logarithm
21.
lim
x
→
∞
ln
x
x
=
0
\lim{x \to \infty}\dfrac{\ln x}{x} =0
lim
x
→
∞
x
ln
x
=
0
Limit
Logarithm
22.
lim
n
→
∞
(
∑
k
=
1
n
1
k
−
ln
n
)
=
ℽ
\lim{n \to \infty} \left( \sum^n_{k=1} \dfrac{1}{k} - \ln n \right) = ℽ
lim
n
→
∞
(
∑
k
=
1
n
k
1
−
ln
n
)
=
ℽ
Limit
Variables:
ℽ
→
Euler Mascheroni constant
23.
lim
n
→
∞
n
n
!
n
=
e
\lim{n \to \infty} \dfrac{n}{\sqrt[n]{n!}}=e
lim
n
→
∞
n
n
!
n
=
e
Limit
24.
lim
n
→
∞
(
n
!
)
1
/
n
=
∞
\lim{n \to \infty} \left(n!\right)^{1/n}=\infty
lim
n
→
∞
(
n
!
)
1/
n
=
∞
Limit
Add formula to this category
Home
Algebra
Factoring formulas
Product formulas
Exponents formulas
Square roots formulas
Higher roots formulas
Logarithm
Set Identities
Complex Numbers
Logic
Geometry
Equilateral triangle
Isoscales triangle
Right Triangle
Scalene Triangle
Rectangle
Square
Rhombus
Parallelogram
Cyclic Quadrilateral
Circle
Trigonometry
Radians and Degrees
Most Important Formulas
Sum and difference formulas
Double angle formulas
Half-angle formulas
Multiple Angle Formulas
Sum to product
Product To Sum
Power of trigonometric functions
Analytic geometry
Two - dimensional coordinate system
Line in plane
Circle
Ellipse
Hyperbola
Differential Calculas
Limits of Functions
Differentiation rules
Differentiation Formulas
Derivatives of Composite Functions
Higher Order Derivatives
Integral Calculus
Integrals of Rational Functions
Integrals of Irrational Functions
Integrals of Trigonometric Functions
Integrals of exponential and logarithmic functions
Integrals of hyperbolic functions
Series
Arithmetic series
Geometric series
Finite sums
Power series
Factoring formulas
Product formulas
Exponents formulas
Square roots formulas
Higher roots formulas
Logarithm
Set Identities
Complex Numbers
Logic
Equilateral triangle
Isoscales triangle
Right Triangle
Scalene Triangle
Rectangle
Square
Rhombus
Parallelogram
Cyclic Quadrilateral
Circle
Radians and Degrees
Most Important Formulas
Sum and difference formulas
Double angle formulas
Half-angle formulas
Multiple Angle Formulas
Sum to product
Product To Sum
Power of trigonometric functions
Two - dimensional coordinate system
Line in plane
Circle
Ellipse
Hyperbola
Limits of Functions
Differentiation rules
Differentiation Formulas
Derivatives of Composite Functions
Higher Order Derivatives
Integrals of Rational Functions
Integrals of Irrational Functions
Integrals of Trigonometric Functions
Integrals of exponential and logarithmic functions
Integrals of hyperbolic functions
Arithmetic series
Geometric series
Finite sums
Power series
Toggle